csvtuonline.com

BE (4th Semester)

Examination, April-May, 2018

(New Scheme)

Analog Electronics

Time Allowed: 3 hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note : (*i*) Part (a) of each question is compulsory. Attempt any two parts from (b), (c) and (d) of each question.

- The figures in the right-hand margin indicate (ii) marks.
- What are the effects of adding emitter resistor R_F to the common emitter amplifier?
 - Show that the exact expression for h_{fe} in terms of the CB hybrid parameter is

$$h_{fe} = -\frac{h_{fb} (1 - h_{rb}) + h_{ib} h_{ob}}{(1 + h_{fb}) (1 - h_{rb}) + h_{ob} h_{ib}}$$
[7]

csvtuonline.com

(Turn Over)

[2]

csvtuonline.com

(c) State and prove Miller's theorem and its Dual.

[7]

[7]

(d) Calculate $A_I = I_o / I_i$, A_V , A_{V_S} , R_i and R_o' for the cascade circuit shown.

cc **≹** 25 kΩ $200 k\Omega$ $R_s=1 \text{ k}\Omega$ **≩** 10 kΩ ₹100Ω

- (a) What is $r_{b'b}$? How does it respond to temperature?
 - csvtuonline.com
 - (b) Prove that:

 $h_{fe} = g_{m}r_{b'e}$ (ii) $h_{ie} = r_{b'b} + r_{b'e}$

(c) The following transistor measurements are made at $I_C = 5$ mA, $V_{CE} = 10$ V at room temperature, $h_{fe} = 100$, $h_{ie} = 600 \Omega$

 $|A_{ie}| = 10 \text{ at } 10 \text{ MHz}, C_C = 3 \text{ pF}$ Find F_{β} , F_{T} , C_{e} , $r_{b'e}$, $r_{bb'}$.

[7]

[2]

[7]

csvtuonline.com

- (d) Derive the expression of f_H for emitter follower at high frequencies.
- (a) Define rise time of an amplifier. How it is related with upper 3 dB frequency of the amplifier?
 - (b) Prove that the bandwidth shrinks in cascading of identical non-interacting stages.
 - (c) It is desired that the voltage gain of the RC coupled amplifier at 60 Hz should not decrease by more than 10% from its midband value. Show that the coupling capacitance Cmust be at least equal to 5.5/R', where R' = $R_o' + R_i'$ and is expressed in kiloohms and C in microfarads. csytuonline.com
 - Show that the maximum conversion efficiency of the idealized class B push-pull amplifier circuit is 78.5%.
- (a) What is the effect of negative feedback on bandwidth of an amplifier? [2]
 - (b) How will the input impedance of an amplifier be effected by the introduction of
 - voltage series feedback:
 - current shunt feedback? [7]
 - (c) Enumerate the effects of negative feedback on the various characteristics of the amplifier. [7]

- (d) For the transistor feedback amplifier stage shown $h_{fe} = 100$, $h_{ie} = 1$ K, while h_{re} and h_{oe} are negligible. Determine with $R_s = 0$
 - $R_{mf} = \frac{V_o}{I_s}$, where $I_s = \frac{V_s}{R_s}$
 - $A_{vf} = \frac{V_o}{V_o} \quad (iii) \quad R_{if} \quad (iv) \quad R'_{of}$ [7]

- What are the essential conditions for maintaining oscillations?
 - Explain the operational characteristics of RC phase shift oscillator and prove that $h_{fe \min} = 44.5.$
 - (c) Draw the circuit of Wien bridge oscillator and explain its working principle. Derive the expression for frequency of oscillations. [7]
 - (d) Draw the circuit of Colpitts oscillator. How are the feedback requirements met in it? Derive the expression for frequency of oscillations.

[7]

[2]

[7]

TC-62

[7]

[2]

[7]

[7]