BE (second Semester)

Electronics and Telecommunication Applied Mathematics - II - 300214(14) 2014 - Summer Session, New Scheme

CSVTUonline.com

Chapter 1

1	Select the correct answer. The real part of $(\sin \theta + i \cos \theta)^5$ is : (i) -cos 50 (ii) -sin 50 (iii) sin 50 (iv) cos 50	2
2	Prove that : $ (a+ib)^{m/n} + (a-ib)^{m/n} = 2(a^2 + b^2) \cos((frac\{m\}\{n\}\tan^{-1}\} frac\{b\}\{a\})) $	7
3	if $e^{\alpha+i\beta}=\alpha+i\beta$ prove that : $\alpha^2+\beta^2=e^{-\pi\beta(4n+1)}$	7
4	Sum the series : $ e^{\alpha} \cos \beta - \frac{e^{3\alpha}}{3} {\cos} 3\beta + \frac{e^{5\alpha}}{5} {\cos} 5\beta\infty $	7
	Chapter 2 CSVTUonline.com	
1	Define and write linear differential equation of n th order.	2
2	Solve: $(D^2 + 4D + 3) y = x^2e^{2x} + cos^2x$	7
3	Solve by the method of variation of parameters : $\frac{d^2y}{dx^2} + y = \tan x$	7
4	Solve: $(1+x)^{2} \frac{d^{2}y}{dx^{2}} + (1+x) \frac{dy}{dx} + y = 4 \sin(\log(1+x))$	7

CSVTUonline.com Chapter 3

- 1 Represent $\int_0^{\pi/2} \sin^m \theta \cos^n \theta \, d\theta$ where m and n are positive integers, in terms of Gamma function.
- 2 Find by double integration, the area lying between the parabola $y = 4x x^2$ and the line y = x.

3 Change the order of integration and evalute :

$$\int_0^{2a} \int_0^{x^{2/4a}} xy \, dx \, dy$$

4 Compute :

$$\int \int \int \frac{dxdydz}{(x+y+z+1)^3}$$

if the region of integration is bounded by the co-ordinate planes and the plane x+y+z=1.

Chapter 4 CSVTUonline.com

7

7

- 1 A unit vector normal to the surface $xy^3z^2 = 4$ at the point (-1,-1,2) is 2
- If $\overline{A}=(3x^2+6y)I-14yzj+20xz^2K$ evaluate $\int \overline{A}.\,d\overline{R}$ from (0, 0, 0) to (1, 1, 1) along the path x = t, y = t², z= t³
- Using divergence theorem evaluate $\int\limits_S \overline{F}.\,d\overline{S}\,\,whare\,\,\overline{F}=4xI-2y^2j+z^2K$ and S is the surface bonding the region x² + y² = 16, z = 0, and z = 6.
- 4 If $f = (x^2 + y^2 + z^2)^{-n}$ find div grad f and determine n if div grad f = 0 7

Chapter 5 CSVTUonline.com

- 1 The trnsformed equation of $x^3 6x^2 + 5x + 8 = 0$ into another in which the second term is missing is
- 2 If α , β , γ be the roots of $x^3-7x+6=0$ from an equation whose roots are : $(\alpha-\beta)^2, (\beta-\gamma)^2, (\gamma-\alpha)^2$
- 3 Solve by cardan's method, the equation : $x^3 3x + 1 \text{=} 0$
- 4 Solve by Ferrari's method, the equation : $x^4 10x^3 + 35x^2 50x + 24 = 0$