Printed Pages: 4

Roll No.

320553(20)

BE (5th Semester) Examination, Nov.-Dec., 2018

(New Scheme)

Geotech Engineering - I

Time Allowed: 3 hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: (i) Part (a) of each question is compulsory carrying 2 marks each. Solve any two from remaining (b), (c), (d) carrying 7 marks each. (ii) Take $\gamma_w = 10 \text{ kN/m}^3$, $\rho_w = 1 \text{ g/cm}^3$

Unit-1

- 1. (a) If the porosity of the soil sample is 20%, the void ratio is [2]
 - (i) 0.20 (ii) 0.80 (iii) 1.00 (iv) 0.25
 - (b) An airport runway fill needs 600,000 m³ of the soil compacted to a void ratio of 0.75. There are two borrow pits A and B from where the required soil can be taken and transported to the site.

Borrow pit	In situ void ratio	Transportation cost
A.	0.80	Rs 10/m ³
В	1.70	Rs 5/m ³

Which of the two borrow pits would be more economical?

[7]

(Turn Over)

http://www.csvtuonline.com

2. (a)
(b)
(c)
(d)

http://www.csvtuonline.com

pit has a natural moisture content of 15% and bulk density of 1.9 g/cc. The specific gravity of solids is 2.70. Determine the degree of saturation and void ratio. What will be the unit weight of the sample (kN/m³) of the sample on saturation?

(d) Describe liquid limit, plastic limit, shrinkage limit and plasticity index.

Unit-II

2. (a) The coefficient of curvature is defined as [2] $(i) \quad D_{60}/D_{10} \qquad (ii) \quad D_{10}/D_{60}$

(iii)
$$D_{30}^2/D_{60}D_{10}$$
 (iv) $\frac{D_{10}^2}{D_{10}^2}$

- (b) Explain IS system of soil classification.
- (c) What is the condition, when water is flowing upward direction in soil? Explain. [7]
- (d) For the subsoil conditions shown in Fig. draw the total, neutral and effective stress diagrams up to a depth of 8 m. Neglect capillary flow.

TC-120

(Continued)

[7]

[7]

[7]

http://www.csvtuonline.com

http://www.csvtuonline.com

[3]

Unit-III

- (a) According to Darcy's law for flow through porous media the velocity is proportional to [2] effective stress (ii) hydraulic gradient
 - (iii) cohesion
- (iv) stability number

[7]

[7]

[2]

[7]

[7]

[7]

- (b) Derive expression for average permeability: Case 1: Parallel to bedding planes Case 2: Perpendicular to bedding planes
- Define MDD and OMC, during watering process in subgrade layer of highway. What are their importance?
- (d) Given data:

http://www.csvtuonline.com

TC-120

Maximum dry density	1.8 g/cc or 1.8 g/cm ³
OMC ·	16%
G	2.65
ρ_w	1 g/cm ³

What is the degree of saturation? What is the maximum dry density it can further compacted to?

Unit-IV

The unit of coefficient of consolidation is:

- (i) cm^2/gm
- √*iī*) cm²/sec
- (iii) gm/cm²/sec
- (iv) gm-cm/sec
- Explain Newmark's influence chart. Differentiate between compaction and consolidation.
 - (d) According to Fig. primary consolidation at A is estimated to complete in 36 months. What would be the corresponding time for completion of primary consolidation at B?

(Turn Over)

- friction angle φ, the failure plane will be inclined to the major principal plane by an angle equal to
 - (i) **φ**
- (iii) $45^{\circ} \phi/2$
- (iv) $45^{\circ} + \phi/2$
- (b) Give lists of various methods of driving holes for subsurface investigations.
- Describe the test procedure of direct shear test.
 - (d) Given data:

Name	Value
Major principal stress	300 kN/m ²
Minor principal stress	100 kN/m ²

If, for the same soil, the minor principal stress has been 200 kN/m2, determine the major principal stress for

- (i) $\phi = 30^{\circ}$
- (ii) $\phi = 0_{\circ}$

>>-->>->>

TC-120

http://www.csvtuonline.com

3,410

[7]