http://www.csvtuonline.com

333454(28)

BE (4th Semester) Examination, April - May, 2017

[New Scheme]

Analog Electronics Circuits

Time Allowed: 3 hours Maximum Marks: 80 Minimum Pass Marks: 28

Note: (i) All questions are compulsory. Part (a) of each question is compulsory. Attempt any two parts from (b), (c) and (d) of each question.

- The figures in the right-hand margin indicate marks.
- (a) Write down the value of n_{fe} , h_{re} , h_{ie} and h_{oe} .
 - (b) Explain Miller theorem and Dual of Miller theorem. [7]
 - (c) Derive H parameter model for CB and CC [7] configuration.

(d) Prove that $y_o = h_o \left[\frac{R_t + R_{ioo}}{R_c + R_{cc}} \right]$ where $R_{i\infty} = R_i$ for $R_L = \infty$ and $R_{io} = R_i$ for $R_I = 0$ [7]

- (a) Draw the circuit diagram and small signal equivalent circuit for an emitter follower stage at high frequencies. List its three most important characteristics.
 - (b) What are hybrid π capacitance? Show that diffusion capacitance is proportional to [7] emitter bias current I_F .
 - Derive the expression for transconductance g_{m} . How transconductance varies with [7] temperature?
 - (d) Give the following parameters measurement made at room temperature:

$$I_C = 5 \text{ mA}$$
 $V_{CE} = 10 \text{V}$

$$n_{fe} = 100$$
$$h_{in} = 60 \Omega$$

$$A_i = 10 \text{ at } 10 \text{ MHz}$$

$$C_i = 3pF$$

Find
$$I_B$$
, F_T , C_e , $r_{b'e}$, and $r_{bb'}$

[7]

[2]

http://www.csvtuonline.com

http://www.csvtuonline.com

http://www.csvtuonline.com

[4]

- 3. (a) Define Bandwidth of an amplifier.
 - (b) Write a short note on Darlington configuration.
 - (c) Prove that $F_H^* = F_H \sqrt{2^{\frac{1}{n}} 1}$ in noncascading stage.
 - (d) Define noise. Explain shaft key noise and also explain noise figure. Find the noise bandwidth B_n for an amplifier for which

$$A_{V_0} = 1$$
, $F_L = 0$ Hz and $|A_V(F)| = \frac{1}{\sqrt{1 + (F/_{FH})^2}}$

- (a) Define positive and negative feedback.
 - (b) Write down the comparison between voltage series, current series, voltage shunt and current shunt.
 - (c) Calculate the value of R_{IF} and R_{OF} for current shunt and voltage shunt feedback circuit.
 - (d) An amplifier open loop voltage gain A, = 1000 + 100 is available. It is necessary to have an amplifier whose voltage gain varies by no more than ±.1 percent tilt.

[2]

[7]

[7]

[2]

[7]

nttp://www.csvtuonline.com

[7]

[7]

Find the reverse transmission factor B of the feedback n/w used. (ii) Find the gain with feedback.

[7] (a) Define Barkhausen criteria.

[2]

Explain frequency stability of oscillator. [7]

Explain Hartley oscillator. **[7]**

Explain Wien Bridge oscillator. [7]

http://www.csvtuonline.com

http://www.csvtuonline.com Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स मेजे और 10 रुपये पार्य, Paytm or Google Pay ₹

http://www.csvtuonline.com

710